Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Environ Int ; 171: 107675, 2023 01.
Article in English | MEDLINE | ID: covidwho-2130758

ABSTRACT

BACKGROUND: Recent evidence links ambient air pollution to COVID-19 incidence, severity, and death, but few studies have analyzed individual-level mortality data with high quality exposure models. METHODS: We sought to assess whether higher air pollution exposures led to greater risk of death during or after hospitalization in confirmed COVID-19 cases among patients who were members of the Kaiser Permanente Southern California (KPSC) healthcare system (N=21,415 between 06-01-2020 and 01-31-2022 of whom 99.85 % were unvaccinated during the study period). We used 1 km resolution chemical transport models to estimate ambient concentrations of several common air pollutants, including ozone, nitrogen dioxide, and fine particle matter (PM2.5). We also derived estimates of pollutant exposures from ultra-fine particulate matter (PM0.1), PM chemical species, and PM sources. We employed Cox proportional hazards models to assess associations between air pollution exposures and death from COVID-19 among hospitalized patients. FINDINGS: We found significant associations between COVID-19 death and several air pollution exposures, including: PM2.5 mass, PM0.1 mass, PM2.5 nitrates, PM2.5 elemental carbon, PM2.5 on-road diesel, and PM2.5 on-road gasoline. Based on the interquartile (IQR) exposure increment, effect sizes ranged from hazard ratios (HR) = 1.12 for PM2.5 mass and PM2.5 nitrate to HR âˆ¼ 1.06-1.07 for other species or source markers. Humidity and temperature in the month of diagnosis were also significant negative predictors of COVID-19 death and negative modifiers of the air pollution effects. INTERPRETATION: Air pollution exposures and meteorology were associated the risk of COVID-19 death in a cohort of patients from Southern California. These findings have implications for prevention of death from COVID-19 and for future pandemics.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Meteorology , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Risk Factors , California/epidemiology , Nitrates , Environmental Exposure/adverse effects
2.
Sci Adv ; 8(39): eabo3381, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2053087

ABSTRACT

The World Health Organization (WHO) recently released new guidelines for outdoor fine particulate air pollution (PM2.5) recommending an annual average concentration of 5 µg/m3. Yet, our understanding of the concentration-response relationship between outdoor PM2.5 and mortality in this range of near-background concentrations remains incomplete. To address this uncertainty, we conducted a population-based cohort study of 7.1 million adults in one of the world's lowest exposure environments. Our findings reveal a supralinear concentration-response relationship between outdoor PM2.5 and mortality at very low (<5 µg/m3) concentrations. Our updated global concentration-response function incorporating this new information suggests an additional 1.5 million deaths globally attributable to outdoor PM2.5 annually compared to previous estimates. The global health benefits of meeting the new WHO guideline for outdoor PM2.5 are greater than previously assumed and indicate a need for continued reductions in outdoor air pollution around the world.

3.
Environ Int ; 154: 106564, 2021 09.
Article in English | MEDLINE | ID: covidwho-1174221

ABSTRACT

BACKGROUND: Ecologic analyses suggest that living in areas with higher levels of ambient fine particulate matter air pollution (PM2.5) is associated with higher risk of adverse COVID-19 outcomes. Studies accounting for individual-level health characteristics are lacking. METHODS: We leveraged the breadth and depth of the US Department of Veterans Affairs national healthcare databases and built a national cohort of 169,102 COVID-19 positive United States Veterans, enrolled between March 2, 2020 and January 31, 2021, and followed them through February 15, 2021. Annual average 2018 PM2.5 exposure, at an approximately 1 km2 resolution, was linked with residential street address at the year prior to COVID-19 positive test. COVID-19 hospitalization was defined as first hospital admission between 7 days prior to, and 15 days after, the first COVID-19 positive date. Adjusted Poisson regression assessed the association of PM2.5 with risk of hospitalization. RESULTS: There were 25,422 (15.0%) hospitalizations; 5,448 (11.9%), 5,056 (13.0%), 7,159 (16.1%), and 7,759 (19.4%) were in the lowest to highest PM2.5 quartile, respectively. In models adjusted for State, demographic and behavioral factors, contextual characteristics, and characteristics of the pandemic a one interquartile range increase in PM2.5 (1.9 µg/m3) was associated with a 10% (95% CI: 8%-12%) increase in risk of hospitalization. The association of PM2.5 and risk of hospitalization among COVID-19 individuals was present in each wave of the pandemic. Models of non-linear exposure-response suggested increased risk at PM2.5 concentrations below the national standard 12 µg/m3. Formal effect modification analyses suggested higher risk of hospitalization associated with PM2.5 in Black people compared to White people (p = 0.045), and in those living in socioeconomically disadvantaged neighborhoods (p < 0.001). CONCLUSIONS: Exposure to higher levels of PM2.5 was associated with increased risk of hospitalization among COVID-19 infected individuals. The risk was evident at PM2.5 levels below the regulatory standards. The analysis identified those of Black race and those living in disadvantaged neighborhoods as population groups that may be more susceptible to the untoward effect of PM2.5 on risk of hospitalization in the setting of COVID-19.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Environmental Exposure/analysis , Hospitalization , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , SARS-CoV-2 , United States/epidemiology
4.
Am J Respir Crit Care Med ; 204(2): 168-177, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1166648

ABSTRACT

Rationale: Evidence linking outdoor air pollution with coronavirus disease (COVID-19) incidence and mortality is largely based on ecological comparisons between regions that may differ in factors such as access to testing and control measures that may not be independent of air pollution concentrations. Moreover, studies have yet to focus on key mechanisms of air pollution toxicity such as oxidative stress. Objectives: To conduct a within-city analysis of spatial variations in COVID-19 incidence and the estimated generation of reactive oxygen species (ROS) in lung lining fluid attributable to fine particulate matter (particulate matter with an aerodynamic diameter ⩽2.5 µm [PM2.5]). Methods: Sporadic and outbreak-related COVID-19 case counts, testing data, population data, and sociodemographic data for 140 neighborhoods were obtained from the City of Toronto. ROS estimates were based on a mathematical model of ROS generation in lung lining fluid in response to iron and copper in PM2.5. Spatial variations in long-term average ROS were predicted using a land-use regression model derived from measurements of iron and copper in PM2.5. Data were analyzed using negative binomial regression models adjusting for covariates identified using a directed acyclic graph and accounting for spatial autocorrelation. Measurements and Main Results: A significant positive association was observed between neighborhood-level ROS and COVID-19 incidence (incidence rate ratio = 1.07; 95% confidence interval, 1.01-1.15 per interquartile range ROS). Effect modification by neighborhood-level measures of racialized group membership and socioeconomic status was also identified. Conclusions: Examination of neighborhood characteristics associated with COVID-19 incidence can identify inequalities and generate hypotheses for future studies.


Subject(s)
Air Pollution/analysis , COVID-19/metabolism , Models, Statistical , Reactive Oxygen Species/analysis , COVID-19/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Ontario/epidemiology , SARS-CoV-2
6.
Environ Res ; 191: 110052, 2020 12.
Article in English | MEDLINE | ID: covidwho-935594

ABSTRACT

BACKGROUND: Ambient fine particulate matter (PM2.5) is associated with a wide range of acute and chronic health effects, including increased risk of respiratory infection. However, evidence specifically related to novel coronavirus disease (COVID-19) is limited. METHODS: COVID-19 case counts for 111 Canadian health regions were obtained from the COVID-19 Canada Open Data portal. Annual PM2.5 data for 2000-2016 were estimated from a national exposure surface based on remote sensing, chemical transport modelling and ground observations, and minimum and maximum temperature data for 2000-2015 were based on a national interpolated surface derived from thin-plate smoothing splines. Population counts and sociodemographic data by health region were obtained from the 2016 census, and health data (self-rated health and prevalence of smoking, obesity, and selected chronic diseases) by health region, were obtained from the Canadian Community Health Survey. Data on total number of COVID-19 tests and changes in mobility comparing post-vs. pre-introduction of social distancing measures were available by province. Data were analyzed using negative binomial regression models. RESULTS: After controlling for province, temperature, demographic and health characteristics and days since peak incidence by health region, long-term PM2.5 exposure exhibited a positive association with COVID-19 incidence (incidence rate ratio 1.07, 95% confidence interval 0.97-1.18 per µg/m3). This association was larger in magnitude and statistically significant in analyses excluding provinces that reported cases only for aggregated health regions, excluding health regions with less than median population density, and restricted to the most highly affected provinces (Quebec and Ontario). CONCLUSIONS: We observed a positive association between COVID-19 incidence and long-term PM2.5 exposure in Canadian health regions. The association was larger in magnitude and statistically significant in more highly affected health regions and those with potentially less exposure measurement error. While our results generate hypotheses for further testing, they should be interpreted with caution and require further examination using study designs less prone to bias.


Subject(s)
Air Pollutants , Air Pollution , Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Air Pollutants/analysis , Air Pollution/analysis , Betacoronavirus , COVID-19 , Environmental Exposure/analysis , Humans , Incidence , Ontario , Particulate Matter/analysis , Particulate Matter/toxicity , Quebec , SARS-CoV-2
7.
Health Rep ; 31(3):14-26, 2020.
Article in English | MEDLINE | ID: covidwho-662158

ABSTRACT

BACKGROUND: Immigrants make up 20% of the Canadian population;however, little is known about the mortality impacts of fine particulate matter (PM2.5) air pollution on immigrants compared with non-immigrants, or about how impacts may change with duration in Canada. DATA AND METHODS: This study used the 2001 Canadian Census Health and Environment Cohort, a longitudinal cohort of 3.5 million individuals, of which 764,000 were classified as immigrants (foreign-born). Postal codes from annual income tax files were used to account for mobility among respondents and to assign annual PM2.5 concentrations from 1998 to 2016. Exposures were estimated as a three-year moving average prior to the follow-up year. Cox survival models were used to determine hazard ratios (HRs) for cause-specific mortality, comparing the Canadian and foreign-born populations, with further stratification by year of immigration grouped into 10-year cohorts. RESULTS: Differences in urban-rural settlement patterns resulted in greater exposure to PM2.5 for immigrants compared with non-immigrants (mean = 9.3 vs. 7.5 µg/m3), with higher exposures among more recent immigrants. In fully adjusted models, immigrants had higher HRs per 10 µg/m3 increase in PM2.5 concentration compared with Canadian-born individuals for cardiovascular mortality (HR [95% confidence interval] = 1.22 [1.12 to 1.34] vs. 1.12 [1.07 to 1.18]) and cerebrovascular mortality (HR = 1.25 [1.03 to 1.52] vs. 1.03 [0.93 to 1.15]), respectively. However, tests for differences between the two groups were not significant when Cochran's Q test was used. No significant associations were found for respiratory outcomes, except for lung cancer in non-immigrants (HR = 1.10 [1.02 to 1.18]). When stratified by year of immigration, differences in HRs across varied by cause of death. DISCUSSION: In Canada, PM2.5 is an equal-opportunity risk factor, with immigrants experiencing similar if not higher mortality risks compared with non-immigrants for cardiovascular-related causes of death. Some notable differences also existed with cerebrovascular and lung cancer deaths. Continued reductions in air pollution, particularly in urban areas, will improve the health of the Canadian population as a whole.

SELECTION OF CITATIONS
SEARCH DETAIL